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Abstract According to the face-spiral conjecture, first made in connection with
enumeration of fullerenes, a cubic polyhedron can be reconstructed from a face
sequence starting from the first face and adding faces sequentially in spiral fashion.
This conjecture is known to be false, both for general cubic polyhedra and within the
specific class of fullerenes. Here we report counterexamples to the spiral conjecture
within the 19 classes of cubic polyhedra with positive curvature, i.e., with no face size
larger than six. The classes are defined by triples {p3, p4, p5} where p3, p4 and p5 are
the respective numbers of triangular, tetragonal and pentagonal faces. In this notation,
fullerenes are the class {0, 0, 12}. For 11 classes, the reported examples have minimum
vertex number, but for the remaining 8 classes the examples are not guaranteed to be
minimal. For cubic graphs that also allow faces of size larger than 6, counterexamples
are common and occur early; we conjecture that every infinite class of cubic polyhedra
described by allowed and forbidden face sizes contains non-spiral elements.
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1 Introduction

Cubic polyhedral structures built from carbon and other atoms are of current interest
in chemistry, physics and materials science for many reasons. They are exemplified by
the fullerenes [1–4], and also occur as skeletons of the polyhedral hydrocarbons [5–8]
known collectively as ‘spheroalkanes’ [9]. They are studied as models for electron-
precise clusters involving other elements (e.g., clusters with pairwise replacement of
carbon atoms by BN) [10]. They occur as motifs in supramolecular frameworks [11],
and act as finite models for many of the forms of carbon that have emerged since the
discovery of the fullerenes [12–18] and for chemically plausible ‘spheroarene’ [19]
generalisations of the fullerene class [20–24].

One aspect of the systematic study and nomenclature of chemically relevant poly-
hedra is treated here. It involves the applicability and limitations of the face-spiral con-
jecture and associated algorithms. The face-spiral conjecture for fullerenes [3,4,25]
was that the surface of a fullerene polyhedron may be unwound in a continuous spiral
of edge-sharing pentagons and hexagons such that each new face in the spiral after
the second shares an edge with both (a) its immediate predecessor in the spiral and
(b) the first face in the preceding spiral that has an open edge. In other words, it was
conjectured that any fullerene (cubic polyhedral graph with faces of size five and
six only) could be constructed by a spiral algorithm in which faces were added in
a given sequence starting from an initial face and winding around in spiral fashion
until the structure closed. The list of positions of the pentagons in the spiral sequence
gives a compact representation of any fullerene that can be constructed in this way,
one from which the graph, point group symmetry, approximate structure and various
useful properties can be reconstructed [3,4]. The conjecture was the basis of the first
successful attempt to enumerate fullerene isomers of moderate size [3,4], although a
more efficient method was soon devised [26,27]. The spiral approach is enshrined in
IUPAC proposals for naming fullerenes [28,29]. A stronger version of the conjecture
replaces ‘fullerene’ with ‘cubic polyhedron’ everywhere in the statement. However,
it has been known for some time that the conjecture is false even in its weak fullerene
form [3,4,30], although the known fullerene counterexamples were all large, likely to
be chemically unstable, and still seem well beyond the reach of present-day techniques
for directed synthesis of these molecules. Fullerene graphs exist for all even vertex
numbers n ≥ 20, with the exception of 22 [31], and the smallest unspirallable fuller-
enes found by construction occur at n = 380 [30], and n = 384 [32]. Various studies
have investigated symmetries and pentagon arrangements in possible counterexam-
ples and generated hundreds of further fullerene examples at higher vertex counts
[33–35]. Recent work on the efficient generation of fullerene graphs [36] has com-
pleted the story, by confirming that the cases with 380 and 384 vertices are the smallest
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Fig. 1 The smallest cubic
polyhedron without a face
spiral [37]

I

counterexamples to the spiral conjecture and that there are no other counterexamples
with n ≤ 400.

It is also known that the strong face-spiral conjecture fails much earlier than for
fullerenes, and that the numbers of unspirallable cubic polyhedra grow rapidly with
n [37]. The smallest cubic polyhedron without a face spiral has only 18 vertices
(See Fig. 1) [37], and is derived from the trigonal prism by truncation at all vertices
(omnitruncation). Omnitruncation of any cubic polyhedral parent, apart from the tet-
rahedron, leads to an unspirallable cubic polyhedron [38]. This can be understood in
terms of the small faces (or regions of high curvature) acting as ‘traps’ for putative
face spirals.

The size of the gap between onset of unspirallable cubic polyhedra and the onset
of unspirallable fullerenes suggests a natural question: What is the smallest non-
spirallable cubic polyhedron for any given face recipe? Where would chemical nomen-
clature of the type used for fullerenes first break down for the more general cubic
polyhedra described in the opening paragraph of the Introduction? Here we consider
the subset of cubic polyhedra with no faces of size greater than six, i.e., those cubic
polyhedra with positive curvature.

2 Spirals and classes of cubic polyhedra

If the maximum face size is restricted to six, and p2 = 0 for graphs without multiple
edges, simple counting with Euler’s theorem for polyhedra gives 19 distinct face sig-
natures {p3, p4, p5}, where p3, p4 and p5 are the respective numbers of triangular,
tetragonal and pentagonal faces. All are realisable with some numbers of hexago-
nal faces [39,40]. Realisable point-group symmetries for the 19 classes have been
listed [41]. In the following, we explore each face-signature class and attempt to pro-
vide a minimal unspirallable example, or at least to place bounds on the size of the
smallest unspirallable polyhedron in the class. The initially plausible suggestion that
fullerenes may be the ‘best’ cubic polyhedra for the spiral conjecture proves to be
incorrect with respect to vertex numbers: while the smallest non-spiral fullerene has
380 vertices, the smallest non-spiral polyhedron in the class {2, 3, 0} has as many as
2,170 vertices. If, instead, we consider the number of structures in the class that are
smaller than the minimal counterexample, fullerenes can, however, still be claimed to
be best suited for spiral coding.
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Table 1 Minimal
counterexamples found by
exhaustive generation

In each case, there is a unique
counterexample with the given
vertex number within the class

Face signature Order Figure Point group

{4, 0, 0} 36 Fig. 2g Td

{3, 1, 1} 304 Fig. 2a Cs

{3, 0, 3} 80 Fig. 2h C3h

{2, 3, 0} 2170 Fig. 3 C1

{2, 2, 2} 96 Fig. 2i C2v

{2, 1, 4} 98 Fig. 2e C2v

{2, 0, 6} 96 Fig. 2j C2v

{1, 4, 1} 304 Fig. 2b C1

{0, 6, 0} 306 Fig. 2c D3

{0, 5, 2} 304 Fig. 2d C2

{0, 0, 12} 380 Fig. 2f T

Two methods are used here for finding counterexamples. The first method is exhaus-
tive generation of each family, at each vertex number, followed by a check of the results
for spirals. The counterexamples resulting from this approach are presented in Table 1.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j)

Fig. 2 Minimal counterexamples
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Fig. 3 Minimal counterexample for sequence {2, 3, 0}(33444)

We used the program CGF by Thomas Harmuth [42,43] which can be obtained as part
of the package CaGe [44]. The non-spiral examples were all tested independently by
the two programs used elsewhere [36] to check fullerenes without spirals, and, for the
case of fullerenes only, the generation step itself was also checked with an independent
program.

In cases where, within reasonable time limits, no counterexamples could be found
by exhaustive generation, we modified existing counterexamples from other classes.
We used the four operations shown in Fig. 4 to make new counterexamples. The num-
bers in the figure represent face sizes in the motif used for the operation. The list of
graphs generated in this way is presented in Table 2.

3 Conclusions

One obvious comment on the results presented here is that non-spiral cases are found
reasonably early for all but one of the 19 classes, with one set of classes having
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Fig. 4 Operations used for converting graphs between face signature classes

Table 2 Counterexamples generated by modification

Parent Counterexample
Signature Order Operation Signature Order Point group

{1, 4, 1} 304# A {1, 3, 3} 302 C1

A2 {1, 2, 5} 300 C1

{0, 5, 2} 304# A {0, 4, 4} 302 C2

A2 {0, 3, 6} 300 D3

{0, 0, 12} 384� D {0, 1, 10} 386 C2

D2 {0, 2, 8} 388 C2

{0, 0, 12} 380# C {0, 1, 9} 382 C3

{1, 3, 3} 330† B {1, 1, 7} 326 C1

The parents marked with # are unique minimal counterexamples within their own family. The parent marked
with � is the unique second smallest counterexample within the fullerene family [32,36], which has D3
symmetry. The parent marked with † is a non-minimal counterexample for {1, 3, 3} which is shown in Fig. 5

Fig. 5 Parent of the
counterexample for the class
{1, 1, 7}(345555555)
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Fig. 6 The landscape of spiral counterexamples. In the triangular coordinate system, the vertices of the
master triangle represent ‘pure’ types {4, 0, 0}, {0, 6, 0} and {0, 0, 12}, and in general the values p3, p4,
and p5 are proportional to the lengths of perpendiculars to the triangle sides. Each black dot represents a
counterexample with the number of vertices indicated; minimal counterexamples are labelled in bold face;
those numbers marked with an underline are not claimed to be minimal

non-spiral counterexamples of order 100 or less, and another having counterexam-
ples in the range 300 to 400. The outstanding exception is the class {2, 3, 0} which
requires about five times as many vertices as the smallest fullerene counterexample.
This example is an egregious exception (Fig. 6). It is natural to wonder why it needs
so many vertices. Although this is perhaps not the most precisely defined of questions,
we can at least note that all the other counterexamples have one of two rough shapes:
either a characteristic roughly tetrahedral cluster of defects, or a trigonal-sandwich
structure. The class 33444 does not allow either of these groupings. For polyhedra in
this class, the total defect of 12 is made up of contributions 3, 3, 2, 2, 2. A triangular
shape would require distribution of these defects in 3 groups of defect 4 each (not pos-
sible) Similarly, a tetrahedral shape would require 4 groups of defect 4 each (again not
possible) The eventual first counterexample in 33444 includes four groups of defect
3, 2, 3 and 4, respectively, and spring embedding [44] suggests a starfish-like shape,
with four arms (Fig. 7).

For cubic graphs that also allow faces of size larger than 6, counterexamples occur
early, and are abundant [37]. These results suggest the conjecture that every infinite
class of cubic polyhedra described by allowed and forbidden face sizes contains non-
spiral elements.
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Fig. 7 A 3D embedding of the minimal counterexample from the class {2, 3, 0}(33444)
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